
RoboForth Tutorial page 1

ROBOTICS SELF-LEARN TUTORIAL – 5-AXIS ROBOTS R12,R17

Introduction

Aim of the tutorial is to provide a comprehensive introduction to the programming and use
of ST robot arms using ROBOFORTH II ©. This will include "hands on" experience of
programming with examples provided.

"Tell me and I will forget, show me and I will remember, involve me and I will understand"
Aristotle

Some sections are marked ==advanced== these are less useful and more complex
programming. If you want you can just skip these to the next section.

Not all the features of RoboForth are described in this tutorial. For more information see the
RoboForth II manual and the controller manual.

Launch RobWin

RobWin is a computer program to help you program the robot. Most of the buttons do no
more than send a command to the robot to save you the trouble of typing it. RobWin is a
project manager and once you have a project open some buttons or actions change data in
the controller as well as in the computer.

Double-click on the ROBWIN icon. Along the top are the menu buttons, below that is the
robot tool bar and below that is the macro bar (see later).

Load/check settings: On the menu bar click settings, open file. If you have an R17 click on
R17.CFG; if an R19 click on R19.CFG, if an R12 click on R12.CFG
Caps lock – All RoboForth commands are in UPPER CASE, ensure CAPS LOCK is on.
Switch the key switch to cold start and switch on the robot controller.
In the communications window (the console) you should see a herald which includes the
words ‘cold start’ and a chevron prompt >.
Type
ROBOFORTH

NOTE: You should always close RobWin before you switch off or disconnect the controller.

RoboForth and this tutorial are copyright © David N Sands, 1983 to present.

28.02.2015

RoboForth Tutorial page 2
Basic technology

System architecture: a robot arm and its connections.

 Computer, CPU, DSP, Axis drives, encoders

The K11R controller can have up to 6 axis drives for example for a 5-axis robot on a track.

The CPU sends motion commands to the DSP which in turn controls motion via intelligent
drive modules, thus freeing the CPU for overall program control and I/O. Optical incremental
encoders connect back to the DSP which sends this information back to the CPU on
completion of each move. The CPU compares these counts with the counts it sent and halts
motion in case of error. For example in the event of a stall robot motion is aborted and an
error is announced (which is safer than most robot systems which continually try to get into
position).

Both the programming system and user's software are stored in fast RAM but can be saved
back to flash EPROM with the command USAVE. When power is switched on the contents of
flash are copied to RAM.

28.02.2015

RoboForth Tutorial page 3
A computer is needed to program the controller which can be removed after programming is
complete. Connection is via serial RS232 or USB (option). During programming data and
procedure may be saved both to disk and to controller Flash EPROM. Once programmed the
controller will run on its own without a computer.

In the K11R generally program and data are separated in two memory banks. The basic
input-output system (BIOS), Forth, RoboForth and the users software are all in bank 0 and
the data i.e. learned positions are in bank 1. The BIOS and Forth itself are in a protected part
of Flash that can never be corrupted.

How stepping motors work, stepping motor counts, micro-stepping.

This is a hypothetical motor that moves 90 degrees per step. By alternately switching the
polarity of the vertical and horizontal magnetic coils the magnetic field switches round 90
degrees at a time and the rotor moves 90 degrees to follow it. This means there are 4 steps
per rev of the motor. In a real motor as in an ST robot the rotor is made up of 50 poles so
each step is 1.8 degrees. This results in 200 steps per rev.

Additionally the K11R controller breaks each step up into 10 micro-steps. So that instead of a
step suddenly changing by 90 degrees as in the hypothetical motor or by 1.8 degrees as in
an ST motor the field is progressively rotated sinusoidally from one step to the next. This
results in 2000 micro-steps per rev. The ST software then scales this up using an array of
constants called MICROS. If the value in the array for that particular axis is 2 then there are
only 1000 CPU-steps per rev. It were 4 then there would be only 500 CPU-steps per rev. The
usual values for MICROS are 1 or 2.

As the frequency of the steps increases the motor runs faster. Because there is mass and
inertia, not just of the rotor but of the whole robot the frequency must be ramped up and then
down again to stop. All this is controlled by the DSP.

The K11R controller uses a high voltage and constant current control to keep the current
constant throughout the rev range. Nevertheless motor torque (and payload) is much greater
at lower speeds.

28.02.2015

RoboForth Tutorial page 4
Getting Started
Because RoboForth is built on the computer language Forth it is helpful to have some
understanding of Forth itself.

Command Line
Commands are words which you type in followed by the return key. All commands in FORTH
and ROBOFORTH are in upper case. Commands may have lower case but they are different
commands. It is easier just to press caps lock and stay in upper case.

Throughout this manual the user's entry will be written in UPPER CASE, GREEN
UNDERLINED but not the computer's response e.g.:-
TELL OK
You press the return key after typing TELL and the computer answers OK. I won't keep
repeating that you need the return key after the command or after a line of commands. And I
won’t keep writing the OK.

If it is a command that takes some time to complete, for example a motion command then
the response OK will not come until the controller (and robot) have completed the command
successfully. If there is an error then you won’t see OK, but an error message.

Where commands have ROBWIN shortcuts the ROBWIN key, button or mouse sequences
are indicated with a ROBWIN icon.

Sometimes a string of commands are required; these are typed on one line separated by
spaces e.g.
(don't type this)
TELL TRACK OK

You press the return key after the last word and the computer answers OK when it
successfully completes the whole line - provided there has been no mistake as in the
following:-
TELL TRUCK TRUCK NOT DEFINED - the word 'TRUCK' was not understood.

28.02.2015

RoboForth Tutorial page 5
Words and definitions
Forth has no “syntax” as such. All the commands are just words that are organized as a
linked list or "dictionary". With each word in the dictionary is kept its definition, as with a
conventional dictionary. Each word in the command line is looked up in the dictionary and its
"meaning" is executed. If FORTH cannot find the word it tries it as a number and converts it
to a value. If that fails the word is rejected and the rest of the line ignored. Note that
sometimes two English words make up one ROBOFORTH word e.g. GOTO or ISAT.

You can easily add to this dictionary by defining your own words and that is how
programming in Forth is done. To add a new word to the dictionary you use a defining word,
of which the most common is the colon. The colon says add the next word to the dictionary
and the words after that are its definition. The definition ends with a semi-colon.

For example enter

>: HI . ” HELLO “ ; OK
The new definition of HI begins with a colon and ends with a semi-colon. Press return
after the semi-colon to get OK.

Note that the colon is itself a Forth word. Forth can only identify it as a word because it has a
space between it and the next word. The semi-colon and .” are also words.

Now the word HI has been added to the dictionary you can use it thus: Just type HI and press
return.

>HI HELLO OK

 WARNING: All words are stored in the dictionary as a length plus the first 5 characters
of the word. Therefore ambiguities are possible and should be avoided (such as ROBOT1
and ROBOT2 which are the same length and have the same 5 starting characters).
In particular avoid creating words similar to RoboForth words for example if you create a
word RECEIPT this has the same first 5 characters and the same length as RECEIVE. Since
RobWin uses this word if you redefine it in this way then communication between RobWin
and Roboforth is not possible.

Words may be made up of any characters and any number of characters. It is a convention
that many of the more basic words in the FORTH 'kernel' have agreed pronunciations, for
example . (dot) is the shortform (there is no long form) for PRINT and is pronounced "print", !
is pronounced "store", @ is pronounced "fetch" and so on. Pronunciations will be given as
they arise.

A word you have created in this way may be removed from the dictionary with FORGET e.g.

>FORGET HI OK
Now try HI and you will get

>HI HI NOT DEFINED

28.02.2015

RoboForth Tutorial page 6

==advanced==

When you type words into the command line those words are collected
and interpreted by a master word called the outer interpreter.

Each word in the dictionary has a structure comprising the length of the word, the first 5
characters, the code field address or CFA, then the parameter field address or PFA.
When you include a word in a new definition the outer interpreter looks that word up
in the dictionary and compiles it’s code field. When a word is executed it’s code field
is sent to the inner interpreter which actually executes the code. The word it execute
may well be another definition of another list of words each one of which is sent to
the inner interpreter to be execute. Finally words which are pure machine code end
the thread. These words are called “primitives”.

The PFA can be found with a single quote pronounced as tick.
‘ HI (tick HI) looks up HI in the dictionary and leaves the PFA on the stack. If it can’t be
found it says HI NOT DEFINED

The CFA can be found with FIND e.g.
FIND HI X. results in the CFA of HI being found and printed in a hex format (X.)
If HI can not be found it will leave zero.

Once a CFA is found it can be executed with EXECUTE, i.e.
FIND HI EXECUTE is the same as just typing HI.

28.02.2015

RoboForth Tutorial page 7
Arguments
Arguments are values used by any function or command e.g. in
100 STEPS
the argument is 100 and is typed in before the command (STEPS) which needs it.

The BASIC expression 5 + 6 uses INFIX notation. In FORTH we write 5 6 + which is
POSTFIX notation. This is because the values 5 and 6 are placed on a STACK for use by the
word ‘+’
A stack is an area in memory into which values are temporarily stored on a last-in first-out
basis. The answer is left on the stack for use by following words for example a period which
means print the value on the stack. For example:-
>DECIMAL (return key) OK
>5 6 + . (return key) 11 OK (don't forget the space in between each number and word)
The dot is shortform for print.

You could just as easily have written the above numbers and words on separate lines. Forth
doesn’t care whether you use a space or a new line. For example
>5 (5 then return key) OK
At this point you have done nothing but put the value 5 on the stack.
>6 (6 then return key) OK
Now there are two values on the stack. The top value is the 6 with the 5 next one down.
>+ (+ then return key) OK
The word “+” removes the two values from the stack, adds them together and leaves the
result on the stack. Now there is only one value on the stack, the value 11
>. (dot then return key) 11 OK
The dot means for print. It takes the value off the stack and prints it on screen. Now the stack
is empty.

So because all Forth words that use values expect to find them on the stack, those values
must be entered or computed first. For example
>1000 STEPS (return key) OK
moves a selected joint 1000 motor steps -- or rather 1000 CPU steps (see above).
Don’t worry, nothing should move because we haven’t yet selected an axis.
>1000 MOVE (return key) OK
is the same but the system keeps a count of how many steps have been sent.
You can’t write MOVE 1000

Integers
The standard representation of a number in ST Forth is a 16 bit integer made up of 2 bytes.
A single stack entry is a 16-bit value. Arithmetic is done with 16-bit twos complement values
in the range -32768 to +32767 unless unsigned integers are specified (0-65535). If necessary
32 bit values may be used (4 bytes). These occupy 2 stack places and are normally only
used to assist with scaling i.e. mixed precision arithmetic. Floating point arithmetic is also
possible in FORTH but integer arithmetic is preferred. Even trigonometry can be performed
using integers (see controller manual) with an implied decimal point.

28.02.2015

RoboForth Tutorial page 8

FORTH words you need to know
The FORTH words are not part of ROBOFORTH but exist at the bottom of the dictionary.
They support the higher level ROBOFORTH words. While many of these words are esoteric
there are some that are really useful or even essential for writing any kind of software that
goes beyond the basics, for example changing speed, I/O etc. The following FORTH words
are worth knowing. For details of all the FORTH words see the system manual. It is possible
to do really complex tasks using both FORTH and ROBOFORTH.

Although the stack is used extensively to pass arguments, variables also exist and are
handled with the words ! (pronounced "store") and @ (pronounced "fetch"). A variable is just
a word which leaves its address on the stack. The actual address is unimportant.

You can create a new variable with the word VARIABLE e.g.
VARIABLE TOPSPEED
creates a new variable with the name TOPSPEED. VARIABLE is a defining word.

The word ! (exclamation mark and pronounced “store”) means "store the second value down
on the stack into the address which is the top item on the stack", for example 12 5000 !
means "store the value 12 into memory address 5000". In the process both numbers are
used up leaving the stack empty. A variable is simply a memory address with a name.
To put a new value into the variable TOPSPEED use the syntax e.g.
2000 TOPSPEED !
Which means store the value 2000 into the address TOPSPEED
Remember TOPSPEED is just a location in memory which has a name.

@ (at-sign, pronounce “fetch”) means "fetch the contents of the address on the stack and
leave it on the stack". In the process it uses up that address. For example
TOPSPEED @
gets the current value of TOPSPEED and leaves it on the stack for another word to use up,
for example the period . which means "print".
The current value of TOPSPEED could be found with
TOPSPEED @ . (pronounced "topspeed fetch print")
or the easier form
TOPSPEED ?
Data can be transferred from one variable to another with e.g.
TOPSPEED @ SPEED !

28.02.2015

RoboForth Tutorial page 9
You can also create a variable with the word USER.
When you use VARIABLE (word) the actual value of the variable is stored in the parameter
field of the new word as per standard Forth practice. See the structure of a Forth word in the
controller manual. However if the text around this word is edited then recompiled (reloaded)
then the actual address of the data may change. Therefore any previous value will be lost.
There is another way of creating a variable with
USER TOPSPEED
This stores an address in the parameter field which points to a location in a reserved memory
area called the User memory. The contents of this are unchanged after a reload.

If USAVE is used then the contents of user variables are saved to FLASH ROM and reloaded
from FLASH after a reset or power-up.

There is a pointer to this memory UVP which is incremented each time a new USER variable
is created. If you FORGET a user variable the pointer is restored to the previous user
variable. Typing the word ROBOFORTH restores the pointer to the start of the user memory.

Control words -1

Control words are IF...THEN, BEGIN...UNTIL and DO...LOOP and
others. These words cannot be used in command mode but must be
incorporated into new words (new definitions). They are a bit harder to
understand so you may wish to revisit this section at a later time.

As already stated arguments are passed on a stack. A condition is a numerical argument for
such words as IF, WHILE and UNTIL. Any non zero value (positive or negative) is treated as
true, and zero is false.
The structure of an IF statement is this: (condition) IF (action) THEN
If the condition is true (non-zero) then all of (action) is executed but if false (zero) then the
program flow branches immediately to the words following after THEN. The word THEN
closes the IF statement like ENDIF in Pascal. In BASIC the close of an IF statement is the
end of the line.
A condition may be set up with comparing words such as = > and < but the result of any
calculation may be used.
Examples of conditions are:
2 4 = leaves zero on stack i.e. false
2 2 = leaves a 1 on stack i.e. true
PRESSURE 100 > leaves true (non-zero) if the word PRESSURE leaves any value on the
stack which is greater than 100.
Example:
: PRELIEF PRESSURE 1000 > IF VALVE ON THEN ;

28.02.2015

RoboForth Tutorial page 10
Try this definition:
>: ISIT6? 6 = IF .” YES “ ELSE .” NO “ THEN ; OK
>6 ISIT6? YES OK
>5 ISIT6? NO OK

It is often useful to set up a continuous loop which ends only if a condition is met. Structure:
BEGIN (action) (condition) UNTIL
This executes action in a loop and repeats until the condition is true.
Example (don’t try it): This repeats a robot motion until the escape key is pressed
: TASK
BEGIN
 P1 GET
 P2 PUT
?TERMINAL UNTIL
;
the word ?TERMINAL checks the keyboard to see if the escape key is pressed. If it was
pressed ?TERMINAL leaves true. UNTIL picks up the true and exits the loop.
Note false is zero and true is any non zero value.

Don’t try this yet. Real examples will be given later.

Other control loops are: IF ELSE THEN, BEGIN WHILE REPEAT, and counting loops DO
LOOP.

See control words -2

For a full explanation of all the various control words and how to use them please see the
system manual, section 10.6

RobWin
Is a computer program to help you program the robot. Most of the buttons do no more than
send a command to the robot to save you the trouble of typing it. RobWin is a project
manager and once you have a project open some buttons or actions change data in the
controller as well as in the computer.

28.02.2015

RoboForth Tutorial page 11

 WARNING
Before trying any of the following commands be sure to

KEEP OUT OF THE ROBOT ENVELOPE

Initialization and calibration commands:

To START with enter
START
or click this button in Robwin
This initializes all the drives, starting values for variables such as SPEED and so on.
CALIBRATE
or tells the robot to seek out all the sensors on the axes. The number of steps from the
home position to these sensors is known, so that after CALIBRATE is used the robot knows
exactly how far it is from the HOME position. HOME is where all the counts are zero. It is also
a significant position for Cartesian transformations (kinetics) because it is where X and Y
positions of the hand are both zero.
HOME
or click tells the robot to go to to the HOME position.
Enter
WHERE
This will report the position of the robot. You will see 3 lines of numbers e.g. for R12/R17
 WAIST SHOULDER ELBOW L-HAND WRIST OBJECT
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
The top line is the software counts for each axis. Of course these are zero for the HOME
position. The middle line is the counts back from the encoders. The bottom line is where the
encoders think the robot is i.e. the counts multiplied by a factor depending on gear ratios,
encoder resolution etc. In practice these will not be zero. They will be close to zero for an
R17 but significantly larger for an R12 because on an R17 the encoders are close to the
motors and on R12 they are some way down the gear train.

If you want to move the robot by hand use
DE-ENERGIZE
Then to re-energize use
ENERGIZE
But if you have moved the robot while de-energize its position will be invalid so you had best
use START and CALIBRATE again.

28.02.2015

RoboForth Tutorial page 12
Moving the robot and teaching the robot are separate operations.

Moving the robot using TELL with relative and absolute commands

Try these
TELL WAIST 1000 MOVE (press enter) (small delay then) OK
The robot moves 1000 steps and when it stops you see OK. Try
WHERE
 WAIST SHOULDER ELBOW L-HAND WRIST OBJECT
 1000 0 0 0 0
1000 MOVE
We are still talking to the waist so it moves another 1000
WHERE
 WAIST SHOULDER ELBOW L-HAND WRIST OBJECT
 2000 0 0 0 0
Another 1000 brings the total movement to 2000
1500 MOVETO
MOVE was a relative command and MOVETO is an absolute command.
Now the waist moves back from 2000 to 1500
WHERE
 WAIST SHOULDER ELBOW L-HAND WRIST OBJECT
 1500 0 0 0 0
-1000 MOVE
Now the waist moves backwards 1000
WHERE
 WAIST SHOULDER ELBOW L-HAND WRIST OBJECT
 500 0 0 0 0
TELL SHOULDER REVERSE 1000 MOVE
Now the shoulder will move backwards
WHERE
 WAIST SHOULDER ELBOW L-HAND WRIST OBJECT
 500 -1000 0 0 0
And so on for the other axes.
You can move any axis with the word STEPS e.g.
TELL WAIST 1000 STEPS
However these will not be counted so when you type WHERE they do not show.

==advanced==

Two flag bytes determine which motors will run and in which direction.
In each byte bit 0 (value 1) is motor 1 (waist), bit 1 (value 2) is motor 2
(shoulder), bit 2 (value 4) is motor 3 (elbow) and so on. These two bytes
are like variables but instead of using @ and ! as previously explained
you must use the 1-byte versions, C@ and C!
MEP – Motor Enable Pattern
MDP – Motor Direction Pattern.
Examples: 1 MEP C! 0 MDP C! 1000 MOVE moves the waist 1000 steps.
2 MEP C! 2 MDP C! 1000 MOVE moves the shoulder 1000 steps in reverse.

28.02.2015

RoboForth Tutorial page 13
Operating the gripper.
GRIP
UNGRIP
The RobWin icon will alternately (toggle) the gripper open and closed.
Time is allowed for the gripper to operate. This is in the variable TGRIP in mSecs.
To see how many mSecs is allowed write TGRIP ?
To increase or reduce the time allowed put a new value in TGRIP e.g.
1000 TGRIP !

To operate the pneumatic (not electric) gripper without any delay at all use
GRIPPER ON and GRIPPER OFF

Electric Gripper
The electric gripper uses two outputs which are switched on and off at high speed to control
the speed of closing and opening. This is called PWM (pulse width modulation).
A variable GTYPE contains values 0 or 1. 0 is simple on/off through PA 0 for single actinge
pneumatic gripper. GTYPE set to 1 is for electric grippers using PA0 and PA1 and the PWM
system.
During operation the PWM puts power on the motor for a time in microseconds in the
variable TON then off for 1000 microseconds. Normal value or TON is 500 so power is on for
500 and off for 1000 uSecs. This limits the speed of the jaws to prevent damage to the
bearings.
GRIP the jaws close at controlled speed then finish at full power for maximum gripping force.
UNGRIP the jaws open at controlled speed then de-energised.
The total time for this procedure is limited to TGRIP.

28.02.2015

RoboForth Tutorial page 14
Moving the robot using the teach box.
To use the teach pad click the icon in RobWin or enter
TEACH (then press enter twice)

The following keys now apply:

After entering TEACH you are now in "TEACH mode". To move the arm first select the joint
to move, J1 for waist, J2 for shoulder, J3 for elbow, J4 for hand, J5 for wrist twist. On
selecting a joint the terminal/computer will beep. Then press and hold pressed either + or -
for motion in a positive or negative direction.

A slow speed is ideal for careful positioning. To change the speed press the SPD key then +
to increase or – to decrease. If you used the icon in RobWin then you can also click the
pending dialog box and change the speed there to anything you want between 1 and 255.

To operate the gripper press the key marked 'GRIP', then to close the gripper press the + key
and to open the gripper press the - key. Exit TEACH mode by pressing the escape (ESC) key
on the computer keyboard.

If you press the Home key (an H with a red roof) the robot goes back to Home position.

28.02.2015

RoboForth Tutorial page 15
Changing speed and acceleration.

The robot speed is set with the variable SPEED. The default value (after typing START) is
10000. You can change the speed with e.g.
5000 SPEED !
The ! means store. This line stores the value 5000 into the variable SPEED.
Try this: create a new definition thus:
: TEST TELL WAIST 5000 MOVE 0 MOVETO ;
Then try different speeds e.g.
1000 SPEED ! TEST
20000 SPEED ! TEST
The maximum value of speed for an R17 is 32767 and for an R12 65535. High speeds
should only be used with caution.

The motors have to ramp up in speed and ramp down at the end of the move. This is the
variable ACCEL (acceleration)
Try
10000 SPEED !
2000 ACCEL ! TEST
500 ACCEL ! TEST

SETTINGS
Allows you to change speed and/or acceleration. Press enter to retain the existing value. Also
shown is the speed limit of the track or roll axis. TRACKSPEED or ROLLSPEED are default
limits so if you run multiple axes using TELL... MOVE then set speed will be ignored and the
lower speed will be used instead. For example if SPEED is 20000 and ROLLSPEED is 5000
then when you command multiple axes to move they will all move at ROLLSPEED. But if
SPEED is lower than ROLLSPEED then the speed will be the lower of the two.
NORMAL
Restores the normal speed and acceleration settings.

It’s often useful to define words for speeds to suit your application, for example
: FAST 30000 SPEED ! 2000 ACCEL ! ;
: SLOW 2000 SPEED ! 1000 ACCEL ! ;
These can be used in later definitions.

==advanced==

If you want to temporarily increase or decrease speed and then restore the
original value, you can save the original value on the stack, then recover it
later, for example:
: SLOMO
SPEED @ (SAVE SPEED ON STACK)
1000 SPEED ! (SET A LOW SPEED)
TELL SHOULDER 1000 MOVE (MOVE SHOULDER 1000 AT LOW SPEED)
SPEED ! (RECOVER ORIGINAL SPEED FROM STACK)
;

28.02.2015

RoboForth Tutorial page 16
Calibration -2

The RoboForth word CALIBRATE seeks out the sensors and changes the counts to those in
an array LIMITS. Thus the robot knows exactly where it is in relation to the HOME position.
VIEW LIMITS
Once it is calibrated there is no actual need to go to the HOME position. You can go directly
from the calibrate position to any other learned position.

There is another word
CALCHECK
That merely checks the calibration and does not correct anything. If the robot is out of
calibration more than a set amount then system stops and reports the error.

==advanced==

You can seek out the sensor on an axis with DATUM, for example
TELL WAIST DATUM
Of course the waist may simply move further away from the sensor so
you need to use VIEW LIMITS to determine which way to search. If the
value for waist is positive then from the HOME position
TELL WAIST DATUM will find the sensor.
If the value is negative then
TELL WAIST REVERSE DATUM will find the sensor.

28.02.2015

RoboForth Tutorial page 17
Introduction to Cartesian mode.

In Cartesian mode it is possible to position the robot to any X-Y-Z position it can reach. To
set Cartesian mode type
CARTESIAN or click
To return to joint mode enter
JOINT or click

At the HOME position type
WHERE
 WAIST SHOULDER ELBOW L-HAND WRIST OBJECT
 0 0 0 0 0
Now enter
CARTESIAN or click
WHERE
 X Y Z PITCH W OBJECT
 0 0 750.0 -90.0 0 (for R17)
 0 0 500.0 -90.0 0 (for R12)
The position referred to is the intersection of the hand pitch and hand roll (W) axes.
The place where X Y and Z are all zero (the origin) is at the intersection of the shoulder axes
and the axis of rotation of the waist. This is clearly not at bench level. The distance between
these two positions when the arm is dead straight (as it is in the HOME position) is 500mm
for an R12 and 750mm for an R17.

A PITCH value of –90.0 degrees is with the hand pointing up. 0 degrees is horizontal and
90.0 degrees is pointing down.

Important: RoboForth is an integer system. There are no decimal places. 500mm is
expressed in RoboForth as 5000 i.e. 5000 units of 0.1mm each. 90 degrees is expressed as
900 i.e. 900 units of 0.1 degrees.

28.02.2015

RoboForth Tutorial page 18
To start using Cartesian mode it is best to use RobWin to set up the required X-Y-Z position
along with workable values for PITCH. Starting from the HOME position try
CARTESIAN or click
On the RobWin menu bar click Robot, then select Cartesian Abs move.

Complete the dialog box with

And click MOVE
The robot will move to a position in front of HOME position with the wrist level with the
shoulder. The position shown is the location of the center of intersection of the wrist roll and
hand pitch joints.
0,0,0 is the center of the intersection of shoulder and waist axes.
So with Z=0 the wrist center is on the same level as the center of rotation of the shoulder.

28.02.2015

RoboForth Tutorial page 19
In the communication window enter
WHERE
 X Y Z PITCH W OBJECT
 0 300.0 0 90.0 0

Now in the communications window try
0 1000 0 MOVE (a relative command)
The robot will move forwards on the Y axis a further 100.0 mm. (remember 1000 is 1000
times 0.1mm units). (actually you can enter 100.0 – it makes no difference but looks better.
Just 100 on its own would be 10.0 mm not 100mm)
WHERE
 X Y Z PITCH W OBJECT
 0 400.0 0 90.0 0

0 3500 0 MOVETO (an absolute command)
WHERE
 X Y Z PITCH W OBJECT
 0 350.0 0 90.0 0

The Cartesian system is top down. When you enter a Cartesian command you are merely
changing the values of variables X Y Z and so on. The commands MOVE and MOVETO and
other commands look at these variables and perform “reverse kinematics” to compute the
motor values for each axis. However if you move any axis using a JOINT command then
these variables are not updated, but stay at their previous values, now invalid. To update
these variables from any robot position (forward kinematics) use COMPUTE. Even if the
robot is in JOINT mode you can see the robot’s Cartesian position with CARTWHERE. So for
example you could enter
JOINT TELL SHOULDER 1000 MOVE
COMPUTE CARTWHERE

Points

You can record temporarily or permanently any Cartesian position the robot is at. Just enter
POINT and a name for example
POINT P1
You can return to this position at any time with
P1 GOTO

28.02.2015

RoboForth Tutorial page 20
ALIGN mode
Try selecting X and move in one direction. As the robot moves along this axis you will see
that the shoulder and elbow adjust to lengthen the distance between the shoulder and hand
and thus keep the hand on the axis i.e. constant Y value.
You will also see that the gripper goes round with the robot because it is not moving relative
to the arm. If the gripper is vertical (PITCH is 90 degrees) then ALIGN mode can keep it in
line with the X and Y axes and not rotate with the arm.
Exit JOG mode with the escape key.
Enter ALIGN
You will see the wrist immediately aligns with the X axis.
Enter NONALIGN and the wrist returns to original position.
Type WHERE – the value under W is the angle of the wrist to the robot. In ALIGN mode it is
the angle to the X axis.

Using the teach pad in Cartesian mode

Once you have the robot in a convenient Cartesian position above you will find it easier to
position the robot using Cartesian commands than Joint commands and the same applies to
the teach pad. This time click the button (or enter JOG). You will see an increment shown
in a dialog box, default value is 10.0mm. You can change this to anything from 0.1mm to
25.5mm (note that 25.4mm is one inch).
Select an axis e.g. X Y or Z.
Now press + or – and the robot will move in that direction along that axis by the amount set
as increment. It just moves once then stops. Release the key and press again for another
movement. You can increase/reduce the increment by pressing SPD then + or –
The increments are set values – to pick a value between them use the dialog box.
J4 is the hand pitch. Default is 10.0 degrees per increment.
J5 is wrist rotate, default is 10.0 degrees per increment.

Using the Nexus teach pad

The Android functions are essentially similar to the simple teach pad but it can not be used in
joint mode. All functions are explicitly named e.g. X+, X-, Pitch+ and so on. Align has its own
button. In addition limited TOOL and WORLD coordinates are supported. See the separate
guide to using the Nexus teach pad.

To use the Nexus first type BLUETOOTH then click the button in RobWin. It would help
to define a Macro button as BLUETOOTH. Alternately type NEXPAD

28.02.2015

RoboForth Tutorial page 21
Walk-through of ALIGN mode.
5 axis version
1. Put the robot in a suitable starting position for this demonstration. Type HOME and
CARTESIAN then click robot, Cartesian absolute move. Send robot to, say X=0, Y=250mm, Z=-
100mm, wrist pitch=90 degrees, wrist rotation=0 as in fig.1. Click MOVE. The robot should
look something like fig. 2:
fig. 1 fig. 2

2. Now move the robot sideways using the communication window. Enter
2000 2500 –1000 MOVETO
You’ll notice that as the waist rotates the shoulder, elbow and hand have all had to adjust to
keep the gripper at the same Y distance. You’ll also notice that the wrist has rotated with the
waist as in fig.3.
3. The angle of the wrist is still zero but to the arm not to the real world. To make it zero to
the X axis enter
ALIGN
as in fig 4.
fig.3 fig.4

28.02.2015

RoboForth Tutorial page 22
4. Now move the robot to the other side. Enter
-2000 2500 –1000 MOVETO
The wrist rotates the other way to hold zero angle to the X axis as in fig. 5
5. Try moving the robot down 50mm, enter
0 0 –500 MOVE
The hand remains vertical and the wrist remains at the same angle to the X axis as in fig. 6

fig.5 fig.6

From this you can see that moving the robot left or right, up or down, the wrist will hold a
constant attitude to the X and Y axes.

6 axis version
The 6th axis behaves in the same way as above if the hand is vertical as in above. The hand
will rotate in the opposite direction to waist rotation to maintain a constant angle with the X
and Y axes. However if the hand is horizontal it is the yaw axis that aligns.

28.02.2015

RoboForth Tutorial page 23
Tool transformations
5 axis version
Besides ALIGN mode you can also change the value of a variable TOOL-LENGTH e.g.
1000 TOOL-LENGTH ! sets the length to 100 mm.
This is the distance between the wrist center (intersection of hand pitch and roll axes) and
the end of the tool. By changing this value you position the end of the tool at the chosen X-Y-
Z position and not the center of the hand.
TOOLSET
invokes a text dialog in the communication window that asks certain questions.
WRIST PITCH
enter a value for wrist pitch in degrees times 10 or just press return to retain the existing
value
WRIST ROLL (W)
enter a value for wrist roll in degrees times 10 or just press return to retain the existing value
TOOL LENGTH
enter a value in mm times 10 from the center of the hand to the tool tip, or just press return to
retain the existing value
ALIGN ROLL? Y to invoke ALIGN mode or N for non-align.
EXECUTE? Y to execute the above changes immediately.
Or press enter to defer the changes. They will take place the next time you use a MOVE or
MOVETO command.
So to invoke ALIGN mode you could just type TOOLSET, then press enter, enter, enter, Y, Y
For normal use the value of TOOL-LENGTH is left at zero.
Also try changing the angle of the hand using TOOL then enter
100 PLUNGE – the robot moves 10.0 mm in whatever direction the hand is pointing.

6 axis version
TOOLSET
WRIST PITCH
enter a value for wrist pitch in degrees times 10 or just press return to retain the existing
value
WRIST YAW
enter a value for yaw in degrees times 10 or just press return to retain the existing value
WRIST ROLL
enter a value for wrist roll in degrees times 10 or just press return to retain the existing value
ALIGN YAW? Y to invoke ALIGN mode or N for non-align.
EXECUTE? Y to execute the above changes immediately.
Or press enter to defer the changes. They will take place the next time you use a MOVE or
MOVETO command.
So to invoke ALIGN mode you could just type TOOLSET, then press enter, enter, enter, Y, Y
For normal use the value of TOOL-LENGTH is left at zero.
Also try changing the angle of the hand using TOOLSET then enter
100 PLUNGE – the robot moves 10.0 mm in whatever direction the hand is pointing.
For a 6-axis robot the hand must be horizontal.
If you have the Nexus teach console you also have these commands:
100 ZTOOL (same as PLUNGE), 100 YTOOL and 100 XTOOL

28.02.2015

RoboForth Tutorial page 24
Walk-through using TOOL-LENGTH (5-axis only)

1. Return to starting position as in the example of use of ALIGN mode above. Click robot,
Cartesian absolute move. Send robot to, say X=0, Y=250mm, Z=-100mm, wrist pitch=90
degrees, wrist rotation=0. Click MOVE.

2. Bring the hand up to level. Click robot, Cartesian absolute move. Change wrist pitch to 0
degrees. The hand is now level but the gripper or your end effector is no longer at the
chosen Y distance (fig 7)

fig. 7

 3. Measure the distance from the center of the wrist/hand joint and the tip of the gripper or
centerline of your end effector. Suppose this is, say 100mm. Enter
1000 TOOL-LENGTH !
 4. Now click robot, Cartesian abs. Move, and just click ok
The robot should pull back so that the gripper is over the chosen position, as in fig.8.
 5. Move the robot sideways with
2000 2500 –1000 MOVETO
Even though the hand has to point in a different direction the gripper (or your end effector)
will still be on the same Y-distance line. The robot should look as in fig. 9.
fig. 8 fig. 9

28.02.2015

RoboForth Tutorial page 25
Important: as stated earlier the XYZ position on a 5-axis robot is the hand center i.e. the
intersection of the wrist roll and hand pitch joints. As soon as you set a value for TOOL-
LENGTH the robot will pull back to make the tool occupy those coordinates and not the hand
center. This could result in a “can't reach in” error. Also if you learn coordinates with one
value for TOOL-LENGTH and subsequently change its value you could get “can't reach in” or
“can't reach out” error.

The XYZ position on a 6-axis robot is the hand center i.e. the intersection of the wrist roll
center-line and the yaw axis center-line.

28.02.2015

RoboForth Tutorial page 26
Learning positions

You can create named positions and lists directly in the communications window. However
you need to use Robwin so that your positions are also saved on disk together with all your
programming.

Start a project

Start by creating a new project. Go to RobWin project, new, and choose a name e.g. myprog.
Three more windows will appear – the myprog.ed2 text window, Places and Routes. You are
now ready to program the robot and not just move it about.

Programming using PLACE names.

If you wish you can create a place directly in the communications window with the command
PLACE e.g. PLACE JIG creates an entity called JIG. The coordinates of JIG are the joint
values of wherever the robot happens to be when you created it. Just using the name JIG at
any future time will send the robot back to those coordinates.

Use RobWin to create a place called JIG.
First use the teach pad to guide the robot to the required position. Using CARTESIAN
mode and the Jog button is best. In the Places box click Add New. Enter JIG as the place
name.
Now type HOME – robot goes back to HOME
Now type JIG – robot goes back to the learned coordinates of JIG
You can add an approach position to JIG. Simply use the teach pad to move the robot up
away from JIG a small amount. In the Places window highlight JIG and click Set Approach.
Now when you type JIG the robot goes first to the approach position then to the target
position.
To move back again to the approach position use
WITHDRAW
Note that the coordinates stored in JIG are Joint values not Cartesian values.
If you wish to change the coordinates at any time guide the robot to the new position then
click Set to Here. The approach position also moves, following the change in target position.
This is because the coordinates learned for the approach are relative coordinates.

Now create a second place say 300mm to the left called FEEDER and a third place further
still called BIN

If you want to see the actual data in a PLACE name then go to the Places listbox and click
Show data. You can also VIEW a place, e.g.
VIEW FEEDER
This will show the coordinates and the relative coordinates of the approach position (marked
with an R).
To change the coordinates of a place move the robot to the new position and click set to here
The approach coordinates also move by the same amount i.e. they maintain the same
relative position.

28.02.2015

RoboForth Tutorial page 27
Objects - 1

You can define objects that the system keeps track of as they are moved around. There are
a number of advantages – 1. finding unique objects and 2. registering whether a position or
lots of positions are occupied with an object or a certain type of object.

You can not use RobWin to create an object, but must do it in the communications window or
the myprog.ed2 window (see later)

Suppose you have an object called PART
OBJECT PART

You can set a starting place for this object with
PART ISAT FEEDER

Now you can move the part with
FEEDER GET
JIG PUT

WHEREIS PART JIG OK

To repeat this you need to put a new PART in FEEDER and empty the JIG
PART ISAT FEEDER
0 ISAT JIG
FEEDER GET
JIG PUT

If you try this again but leave out 0 ISAT JIG you will get an error
JIG PUT POSITION OCCUPIED

VIEW FEEDER
will show the coordinates and the relative coordinates of the approach position (marked with
an R) and any object that is there.

If an object is being held by the robot then WHERE will show the name of the object.

WHEREIS PART tells you where the part is, or if it is being held by the robot.

To tell the robot what it is holding enter
HOLDING PART

28.02.2015

RoboForth Tutorial page 28
Timers

You can create a time delay with MSECS e.g.
1000 MSECS (1 seconds delay then) OK
You can also measure the time something takes…
RESETMS resets the timer to zero. It starts running right away
MSECS? leaves the value of the timer in milliseconds on the stack. You can then print it with
dot.
Example:
RESETMS TELL SHOULDER 1000 MOVE MSECS? .
will print the time it took for the shoulder to move 1000 steps.
(reminder: dot on the end means print)
There is also a microsecond timer e.g.
500 USECS gives a delay of 500 microseconds.

28.02.2015

RoboForth Tutorial page 29
Creation and downloading of text file for pick-and-place routine. (.ED2 file)

Although you can type a definition of a new word directly into the communications window, if
you do you will not be able to edit it or save it to disk. So new definitions should always be
entered into the ed2 window, (project-name.ED2). When you have added or edited a
definition you then download it into the controller with the green down-arrow which
simultaneously saves the text to disk, a text file project-name.ED2

The above programming with objects is best typed into the myprog.ed2 window where you
can edit it or add words later.

You already have three PLACEs created – JIG, FEEDER and BIN
If you are starting here then create those 3 places again as described previously.

In the ED2 text window enter the following text:
(MYPROG)
OBJECT PART
: TASK
PART ISAT FEEDER
FEEDER GET
JIG PUT
5000 MSECS
JIG GET
BIN PUT
0 ISAT BIN
;
Note the (character is actually a Forth word that means ignore what follows, this is just a
note. Because it is a word it must have a space after it.
Now click the green down-arrow to download this into the controller.
In the communications window enter
TASK
To run the whole program.

If you want to edit it say to change from 5 seconds to 4 seconds then make the edit and click
the red arrow again. The code in the controller is replaced with the new code.

Save the project with project, save.
NOTE: You should save the file and shut down RobWin before you disconnect from the
controller or switch off the controller.

To save the project in controller flash memory enter
USAVE

28.02.2015

RoboForth Tutorial page 30
Programming using named lists called ROUTEs.

A route is a list of positions. Originally it was just a path that the robot followed from one line
to the next but the same construct was later used to create a row of equally spaced positions
or a matrix.

A route may be a list of Joint positions or a list of Cartesian positions. In RoboForth you could
create a route directly in the communications window as ROUTE (name). But RobWin should
be used. When created the system also asks how much space you will require (reserved
lines).

Create the simplest route using RobWin called, say PATH1 as follows:
Click the routes Window.
(tip: if you have accidentally closed the routes or places windows then go to project, routes or
project, places to remake the window.)
Go to the Routes box and click New.

Give the new route a name, for example I66
Note that 20 lines are automatically reserved for this route, but if you are expecting to create
a route with more positions than that you can enter a bigger number. If you don’t enter a big
enough number and need more later you can still make the route bigger at a later time. The
maximum number of positions the controller will store is about 4000 which includes any
reserved but unused lines. If you end up using more than 4000 and you have some unused
reserved lines you can make a route smaller at a later time.

28.02.2015

RoboForth Tutorial page 31
Once you have created your route you will see a new listbox window for I66 and I66 entered
as a route in the Routes listbox.

To learn positions into the route click the Insert Posn button. This learns the current position
into the list. The next blank line will be highlighted.
A typical route:

Now move the robot again and click Insert Posn button and so on.
Although you are using a button marked “insert” you are inserting a line on the end of the list.
You can also use the teach pad for this. If you are using the teach pad to move the robot
about you can press the tick key and the current position of the robot will be added as the
next line of the route. Press the FN and cross (red X) keys together and the last position
learned will be removed. (The FN key acts here like a shift key – press and hold it, then the
red X.
At this stage be sure that you are in JOINT mode using TEACH - the icon. Also bear in
mind that if you have more than one route that route must be selected before using TEACH
tick or cross. The system needs to know which route you are working on – see later.
If you wish to insert a line within the list then highlight where you want it inserted by clicking
on that line then click Insert Posn. The new line will be inserted in front of the highlighted line.
If you wish to edit a position move the robot to the required position, highlight the line you
want to change and click Set to here
Another way to edit a line is to click Edit Line then enter the 5 axis values manually.
If you want to delete a line highlight it and click Delete
Finally to run your route click Run
But clicking Run is for testing, not a way of using the route. In the communications window
type RUN You can also compile RUN into other definitions.

28.02.2015

RoboForth Tutorial page 32
You can add the route to a definition in your text window e.g.
: TASK }
PART ISAT FEEDER }
FEEDER GET } this text
JIG PUT } already
5000 MSECS } in the text window
JIG GET }
BIN PUT }
0 ISAT BIN }
; }
: TEST
I66 RUN
HOME
;
Click and enter TEST in the communications window.
You have two top-level words now – TASK and TEST.
You can retrace your steps in the route, i.e. run the route backwards with RETRACE

Other things you can do:
LEARN
this learns a new position on the end of the route, the robot’s current position. It is the same
command that is sent by the Insert Posn button but the data is only learned in the controller
and not in the computer. So you won’t see the data change in the route window.
n INSERT
this inserts the current position of the robot as a new line in front of line n. It is the same
command that is sent by the Set to here button but the data is only inserted in the controller
and not in the computer. So you won’t see the data change in the route window.
n DELETE
this deletes line n. It is the same command that is sent by the Delete button but the data is
replaced only in the controller and not in the computer. So you won’t see the data change in
the route window.
UNLEARN
removes the last position LEARNed.
n REPLACE
this replaces line n with the current position of the robot. It is the same command that is sent
by the Set to here button but the data is replaced only in the controller and not in the
computer. So you won’t see the data change in the route window.
L . (L dot)
This lists a route on screen.
To copy the data up from controller to computer use the red up-arrow

28.02.2015

RoboForth Tutorial page 33
The REPLACE command may be useful where line n needs to be changed during the flow of
the program. It may not be necessary to change the data in the computer because that data
is dynamic and changes as the robot runs. Examples later.
n GOTO
The robot will go directly to the position in line n. This is the same as to highlight a line and
click Goto/Exec

Inserting a function
It is possible to have some other action take place at some point in the route using
Insert Func. A new dialog box will appear.

Click line to insert in front of. Enter the word you want executed, for example you could enter
TASK and have that executed at line n, then the route would continue after it completes. The
dialog box also asks for a parameter – enter zero.
If you want the gripper to operate at a particular point in the route highlight the line and click
Insert Func. A new dialog box appears. Enter GRIPPER and either a 1 to GRIP or a 0 to
UNGRIP.

You can also include a delay in the route using MSECS. For example if you want a 5 second
delay between lines 4 and 5 then click line 5, click Insert Func, enter MSECS in the dialog box
and 5000 for the value.

All the commands described work on the currently selected route. To RUN the route I66
enter I66 RUN. If you type 5 GOTO the robot will go to line 5 of I66. All the words like RUN,
RETRACE, GOTO, REPLACE, LEARN, INSERT, DELETE etc all apply to I66 until you type
the name of another route. For example I66 5 GOTO M1 5 GOTO will send the robot first to
line 5 of route I66 then to line 5 of route M1. You only need type or use the name of the route
once and you can keep using those dependent words until you type or use the name of
another route.
I66 5 GOTO M1 5 REPLACE RUN
sends the robot to position 5 of route I66, changes the contents of line 5 of route M1 to the
same coordinates then RUNs route M1.

28.02.2015

RoboForth Tutorial page 34
Cartesian routes

Using Cartesian coordinates is preferable and you can create a route that uses Cartesian
coordinates. First get the system into Cartesian mode with
CARTESIAN or click
In the routes listbox click New. Let’s call this new route M1

Enter the name of the route and check the Cartesian ‘radar’ button. Click OK and the new
Cartesian route opens. As you can see the heading is now in Cartesian terms rather than
axis names. Position the robot and press Insert Posn to learn the first position, example
shown. Continue learning new positions as previously described. If you want to use the teach
pad use JOG or the button. Press the tick to learn the next position in sequence. Press
the cross to delete the last position learned.

If you wish to shift the whole route in any direction you can use the Add to All button. For
example if you wanted everything to be 10mm higher just click Add to All and enter 10.0mm in
the Z space.

28.02.2015

RoboForth Tutorial page 35
Continuous Path

When you typed RUN you saw that the robot goes from one position to the next, stopping at
each line. This is SEGMENTED mode. If you want the robot to go through these positions
without stopping enter CONTINUOUS or click
Then enter RUN
Instead of running the route you might get an error “too tight, line….”
This is the reason:
The robot does not actually run through the points as such, but runs past them as it changes
direction for the next point. The best analogy is a series of right-angle turns but the maths is
the same for any change of direction or speed. See the diagrams below.

Diagram 1 Diagram 2

In diagram 1 the robot rounds off the corner at line 2 successfully in time to start rounding off
the corner at line 3. But in diagram 2 lines 2 and 3 are too close together for this to be
possible. This would result in the error. The solutions are either to reduce the speed or
increased the acceleration. Either would result in a tighter turn that could fit in the time and
distance allowed for the turn.

The simplest solution is to enter ADJUST. This hashes the speed down to a value that does
not result in the error. It does this by the CPU sending trial speeds to the DSP and asking it if
that is OK. SMOOTH is the same as ADJUST but includes CONTINUOUS.

ADJUST reduces SPEED and announces the value. If that is too slow you will need to reset
SPEED to a high value, increase ACCEL and try ADJUST again.

You can include ADJUST in a definition, for example
: TEST
I66 ADJUST RUN
HOME
;

The word RUN has these important features:
1. It asks the DSP if the current value of SPEED is workable.
2. It tells the DSP to run the route.
3. It then waits for the DSP to finish, then you see OK
4. It monitors the stop button and if that is pressed it sends a STOP command to the

DSP. Then waits for the DSP to decelerate all the motors and finish.
5. It asks the DSP how much it moved all the motors and updates the counts.

28.02.2015

RoboForth Tutorial page 36
DRY RUN tests for too tight errors but does not actually run the robot.
ADJUST and SMOOTH may take some time because the entire route is sent to the DSP with
a new trial speed. If the speed is already low enough no time is wasted.

If the route is very long and is a Cartesian route (and all the lines are Cartesian) then
ADJUST and SMOOTH can take a very long time, even several seconds because each line
must be converted to joint coordinates before sending to the DSP. The entire route must be
converted line by line and sent to the DSP repeatedly in the ADJUST routine. A lot of time
can be saved by converting the route to joint coordinates before using ADJUST and RUN. To
do this use the function CONVERT. The route will still show in RobWin with Cartesian
coordinates but in the controller the lines will be all joint coordinates. If your version does not
have CONVERT you can add it by including the following in your ED2 window.
: CONVERT
LASTLINE 1+ 1 DO
 I LINE EXAD E@ 2 = IF
 I LINE AXES
 TRANSFORM I LINE 16 MOVUP
 THEN
LOOP
;
Follow this with ADJUST or SMOOTH

==advanced==

CRUN tells the DSP to get on and run the route but
1. There is no check for a valid route. Therefore you must be sure

you have a valid speed before using it. It may be a good idea to
use DRY RUN or ADJUST to make sure you have a valid speed
before using CRUN

2. It does not wait for the DSP to finish but gives you OK immediately (or carries on to
the next word in your definition). Obviously the CPU can therefore do something else
while the DSP is moving the robot.

3. It does not check the stop button. In your following words you need to keep checking
the stop button. You can stop motion either because the stop button was pressed or
some other event with the word STOP

4. It does not update the counts after the DSP has finished. To do that you need to read
back the DSP with DSPASSUME

Try a really low speed and start the robot running with
I66 CRUN OK
While the robot is running enter
STOP
Robot stops. Type WHERE – the counts have not changed. Now type
DSPASSUME
WHERE or COMPUTE WHERE For Cartesian coordinates.

28.02.2015

RoboForth Tutorial page 37
How to find out if the DSP has stopped:
Use the word ?RUN – this leaves 0 on the stack if the DSP has stopped.
Example:
: WAIT-DSP-STOP
BEGIN
?RUN 0 = UNTIL
;

How to find out if the stop button has been pressed and what to do about it:
 STOP? IF (stop pressed?
 STOP (tell DSP to stop
 FSTOP C1SET (set stopped flag
 BEGIN ?RUN 0= UNTIL (wait for DSP to finish
 THEN
Always end with DSPASSUME

Of course if you go too far with these you might just as well use RUN. The reason for using
CRUN is so that you can do something else while the robot is running, but somewhere in
your code must be a check for stop button and a check for when the DSP has finished.

GOTO has variants.
n GOTO goes to line n of the currently activated route. But you can also write
n LINE GOTO
n LINE computes the actual memory address of the data and leaves it on the stack for
GOTO to use and send the robot there.
–GOTO is a special case. It will go to the coordinates of any memory location at all that
contains valid coordinates. It only works with motor coordinates and not Cartesian. For
example
LIMITS –GOTO sends the robot to where the calibration values are stored.

Another DSP command is DSPSMOOTH. This is the same as GOTO but passes the
command to the DSP and returns control immediately to the CPU in the same way that
CRUN does, but for a single position, not a route.
Examples
LIMITS DSPSMOOTH OK
Robot goes directly to the calibrate position and CPU says OK while robot is still moving.
5 LINE DSPSMOOTH OK
robot goes directly to line 5 of the selected route and CPU says OK while robot is still moving.
As with CRUN you must interrogate the DSP to find out where it got to with
DSPASSUME

You can move a single axis in a similar way e.g.
TELL SHOULDER 1000 DSPMOVE OK
Similarly use DSPASSUME when the motion is finished.

28.02.2015

RoboForth Tutorial page 38
==advanced==

Structure of data in RoboForth

The coordinates of any robot position are stored in 16-byte arrays
View them as 8 16-bit elements.

0,1 2.3 4.5 6.7 8.9 10,11 12,13 14,15
Waist/X Shoulder/Y Elbow/Z Motor4/

PITCH
Wrist/W Motor 6

(track)
EXAD OBAD

Note that bytes 6 and 7 are referred to as motor 4 not hand pitch. This is because hand pitch
requires two motors to pitch – motors 4 and 5 together. Motor 5 on its own is wrist rotate.
OBAD contains the CFA of any object that is at that location.
EXAD contains an optional code. This is:
0 means the coordinates are motor values and represent an ABSOLUTE JOINT position.
Case: a hypothetical line 5. If the EXAD contained 0 and you wrote
5 GOTO
then the robot would go to a position where all the counts were the same as the first 5 values
in line 5.

1 means the coordinates are motor values and represent a RELATIVE JOINT position. So if
you enter
5 GOTO
The values in line 5 would be ADDED to the current position of the robot and the robot would
move BY that amount and not to the values themselves.
2 means the coordinates are Cartesian values and represent an ABSOLUTE CARTESIAN
position.
5 GOTO sends the robot to that X-Y-Z position.
3 means the coordinates are Cartesian values and represent a RELATIVE CARTESIAN
position. So 5 GOTO would take whatever position the robot was currently at, add the values
in the line to obtain a new position and go there. In other words the robot moves BY those
values and not to the values as absolute coordinates.
If the EXAD value is much larger then it must be the actual CFA of a word. For example if
you had GRIP as line 5 then the 12th,13th bytes of the strip of data for line 5 would contain the
CFA (described earlier).
Now if you enter 5 GOTO the gripper will operate.

28.02.2015

RoboForth Tutorial page 39
Not so advanced
The upshot of the above is that there are 5 possible types of position:
ABSOLUTE JOINT
RELATIVE JOINT
ABSOLUTE CARTESIAN
RELATIVE CARTESIAN
FUNCTION (a word learned with Insert Func)
If a line contains a relative position you will see it listed with an R by it.
If you GOTO a line which is a relative position then the robot does not go to that position but
moves BY that amount. So if you are in CARTESIAN mode and if you were to see a line
listed thus:
Line X Y Z Pitch W
05 0.0 0.0 10.0 0.0 0.0 R
then you were to type
5 GOTO
the robot would move up 10mm in the Z axis. Each time you type 5 GOTO it would move up
another 10mm.

The RoboForth word ADD adds two lines together. It can add an absolute position to a
relative position (marked R) resulting in another absolute position. Or it can add two relative
positions together to make another relative position.
Example
L . (L dot)
Line X Y Z Pitch W
01 0.0 300.0 50.0 90.0 0.0
02 0.0 0.0 0.0 0.0 0.0
03 0.0 0.0 0.0 0.0 0.0
04 0.0 0.0 0.0 0.0 0.0
05 0.0 0.0 10.0 0.0 0.0 R
1 LINE 5 LINE ADD GOTO WHERE
 X Y Z Pitch W
 0.0 300.0 60.0 90.0 0.0

28.02.2015

RoboForth Tutorial page 40
START-HERE and END-THERE

There may be situations where you want to do the exact same sequence of moves but in
different parts of the workspace. For example you might have a number of different starting
positions but from there on the motion is the same. Simply learn your route from the first
starting position (or indeed from anywhere). Send the robot to the desired starting position.
Then use the route name and START-HERE. The first line of the route will change to the
same as the actual position of the robot and all the other lines will shift by the same amount.
So you can use for example
M1 START-HERE RUN
A similar function is END-THERE but that is harder to use. You can’t send the robot to the
ending position and then run the route, so you have to specify that position first. Suppose you
have a point P1. You would write P1 then the name of the route then END-THERE, for
example
P1 M1 END-THERE RUN
Or if, for example, the ending position of M1 needed to be the starting position of another
route, say M2 then you would write
M2 1 LINE M1 END-THERE RUN

28.02.2015

RoboForth Tutorial page 41
Rows and matrices
Case: A rack of 10 test tubes.
You can create a ROW where the first and last lines are each end of the rack. Obviously you
would not RUN this route or it would create a lot of broken glass. But you can GOTO
individual positions, for example 1 GOTO would send the robot to the first tube. Create a new
route with 10 lines for 10 tubes. For larger numbers make sure the amount reserved is the
same plus at least one. Use JOG to create each position in the rack.

It is necessary to approach each tube from above (or side etc) so you need another 10
positions above the tubes. The way to do that is to create a common approach position that
is relative to the others. Finally set a large enough increment and use JOG to move up once
only to a position above the tube. OR you can use for example 0 0 250 MOVE which moves
the robot up 25mm. Now click Set Apprch. You will see an 11th line with 0 for X, 0 for Y and
25.0 for Z. At the end of the line is an R flag meaning this is a RELATIVE position. The
system can now ADD this line to all the other 10 to effectively create 10 more lines 25mm up
on Z. If this value turns out to be wrong you can edit it using Edit line. The finished result will
look something like this:

Again if you wish to shift the whole route in any direction you can use the Add to All button.
For example if you wanted everything to be 10mm higher just click Add to All and enter
10.0mm in the Z space.

To automatically use this approach position do not use GOTO but use INTO e.g.
1 INTO sends the robot to position 1 via its approach position 50mm higher.
To withdraw from the position do not use WITHDRAW which is a PLACEs word, but simply
use

28.02.2015

RoboForth Tutorial page 43
You can take out an object from a line with the words:
5 INTO GET
If there is no object there you will get error 26, NOTHING TO GET

You can gradually fill up an array by repeating the line in a loop as follows:
MOVES is a pseudo-variable (acts like a variable) containing the number of lines in the
selected route. It is in high (extended) memory so must be fetched with E@ not @. It
contains the number of lines including the approach line i.e. one too many which is exactly
what we need for a DO LOOP. Remember I is the index of the loop.
: FILL-TRAY
TRAY
MOVES E@ 1 DO
 PART ISAT FEEDR
 FEEDR GET
 I INTO PUT UP
LOOP
;
Now when the robot has finished you can write L . to see a PART in every position, for
example:
Line X Y Z Pitch W
01 0.0 300.0 0.0 0.0 0.0 PART
02 0.0 350.0 0.0 0.0 0.0 PART
03 0.0 400.0 0.0 0.0 0.0 PART
04 0.0 350.0 0.0 0.0 0.0 PART
etc.
To clear the route of objects to start again (say with a fresh tray) use
TRAY EMPTY
The above process is often called palletizing. The reverse is called de-palletizing i.e. to take a
part from the tray one position at a time and put them somewhere else, for example to get
from the tray and put every part into the bin…
: REM-TRAY
TRAY select tray
MOVES E@ 1 DO from 1 to the size of the route
 I INTO GET UP go to line I (starting at 1) and get what’s there
 BIN PUT go to BIN and put it there
 0 ISAT BIN tell BIN it is empty
LOOP do it again for the next line
;
How to tell the system that the tray is full of parts for a new batch:
PART TRAY FILLUP

28.02.2015

RoboForth Tutorial page 44
Walk-through to create a 2-D matrix
1. Restore the robot to a suitable starting position for the demonstration as in figs.1 and 2
fig. 1 fig. 2

2. Click the J (jog) button and use the teach pad in Z axis only to move the gripper down to
bench level.
3. Enter ALIGN
4. Use Jog to move as in fig. 6.
5. Mark out or visualize a 3 x 2 matrix as in fig. 10

fig.6 fig. 10

28.02.2015

RoboForth Tutorial page 45
6. Find the routes box (assuming you have the project open) and click New. Create a new
route called, say TRAY as a Cartesian Grid, 3 columns and 2 rows as in fig.11. Click OK and
you should see a further box as in fig. 12

fig.11 fig.12
7. Assuming the robot is in the correct position (if not use Jog to adjust it) and with line 1
highlighted click set to here
8. Move the robot to the next position as indicated on fig 10, position 3, using MOVETO
commands or Jog. If using Jog press esc to exit the teachpad. Highlight line 3 and click set to
here.
9. Move the robot to position 6 as indicated in fig. 10. Highlight line 6 and click set to here.
10. Click interpolate and the remaining positions will be calculated.
11. You can optionally set an approach position that is common to all the other positions.
Move the robot vertically using Jog or for example using
0 0 500 MOVE
12. Click set approach. You will now see an additional line as in fig.13, line 7 which shows the
50.0 move in Z and is marked with an R which means this is a relative position. All the others
are absolute positions.

 fig.13

28.02.2015

RoboForth Tutorial page 46
13. A relative position may be added to an absolute position to create another absolute
position. In this case the controller can add line 7 to any of the other 6 positions to achieve 6
new positions 50mm above the originals. You can go to any of these new positions with
n NEAR where n is the line number or position number. Let’s try line 1:
1 NEAR
The robot ends up 50mm higher than position 1.
1 INTO
The robot moves via the approach (NEAR) position of line 1 then into the target position, line
1 itself.
UP
The robot moves up from the target position to the approach position.
1 GOTO
The robot goes directly to line 1 but it could be unsafe to do this. To go from position 1 to
position 2 you should write UP first.

A typical routine to access all positions in a matrix:
The robot gets a part from a bowl feeder and puts it in a tray:
: FILLTRAY
TRAY (TRAY is the name of the route
ALIGN
7 1 DO
 BOWL (bowl feeder pickup position
 GRIP (grip the part
 WITHDRAW (away from the bowl
 I INTO (back to the tray, same position
 UNGRIP (put the tube back in the tray
 UP
LOOP
;

The robot gets a tube from the tray, takes it to a filling station and replaces it in the tray:
: FILLTRAY
TRAY
ALIGN
7 1 DO
 I INTO (go to each tray position in turn
 GRIP (and grip the tube
 UP (remove the tube
 FILLSTN (go to where a dispenser is located)
 FILLUPTUBE (hypothetical command to the dispenser)
 WITHDRAW (away from the dispenser
 I INTO (back to the tray, same position
 UNGRIP (put the tube back in the tray
 UP
LOOP
;

28.02.2015

RoboForth Tutorial page 47
Creating a pile or stack.

This is done as above by creating a Cartesian ROW. The dimensions of the stack might not
be so well known.

Normally you would have some sort of holder to restrain the items in
X and Y, as on the right. However if you are placing objects on a pile
with no requirement to pick them up again then a loose pile will work.

Suppose you have a stack that must hold up to 20 plastic
microplates like those on the right.

1 First stack 20 plates in the holder.
2 Create a route 20 lines high – reserve at least 21 in case you want
an approach position.
3 Using Jog take the robot to the top plate and learn line 20
4 Move robot away and remove all but the bottom plate.
5 Using Jog teach line 1.
6 Click interpolate.
7 If you want an approach position, for example to carefully lower a plate on to the one below
it then create the approach as above, e.g.
0 0 100 MOVE for 10mm
then click set approach.

You can then unload the stack very simply like this.
: FILLSTACK
STACK (STACK is the name of the route
ALIGN
20 1 DO
 GETPLATE (whatever that may entail
 I INTO (go to the tray, next position
 UNGRIP (put plate in the tray
 UP
LOOP
;
Or empty a stack like this:
: GETSTACK
STACK (STACK is the name of the route
ALIGN
20 1 DO
 I INTO (go to the tray
 GRIP
 UP
 PUTPLATE (whatever that may entail
LOOP
;

28.02.2015

RoboForth Tutorial page 48
Creating a straight line

When moving from one XYZ position to another the robot does not move in a straight line but
takes the easiest path with least motor motion which will be a curved trajectory. If you want a
straight line then in the Routes listbox click New. Select Cartesian Row

A straight line is merely made up of a number of shorter moves. Each move is itself a slight
curve so you need to decide how many segments you require. There will of course be 1 more
line than segments. In the above example there are 10 segments, that’s 11 lines or columns.
If you wanted a much straighter route then pick say 100 segments – 101 columns. In that
case you would also need to reserve more lines than 20, say 110.
You now see all 11 lines but all are zero.

Now move the robot to the start of the line. Highlight line 1 and click Set to Here
Next move the robot to the end of the line. Highlight line 11 and click Set to Here
Finally click Interpolate and all the lines between are computed.
Guide the robot back to the start of the line and enter RUN.
The route will progress line by line. For a continuous path enter SMOOTH. This can result in
SPEED = some value that is lower than what you have set. This is because when lines are
very close the DSP algorithm can only run the motors slower.

How close to make them?
It depends on how straight you want the line to be. The robot arcs slightly from one point to
the next. If you want the deviation to be smaller use more points. There is a small exe
program to help you that can calculate the number of points required for any maximum given
deviation. Just run straightline.exe.
Enter the total length of move you require in mm times 10.
Enter the distance from the wrist to the nearest center of rotation. This will normally be the
length of the fore-arm so for an R12 enter 2500. For an R17 enter 3750.
Enter the maximum accepted deviation. For example if your line must not deviate more than
0.5mm then enter 5
Click calculate. This gives you the total number of moves – i.e. the total number of segments
in the route. The number of lines required will be one greater. For example if calculated
number of moves is 4 then make your route with 5 lines.

Finally you can use the same straight line in different places using START-HERE or END-
THERE as above.

28.02.2015

RoboForth Tutorial page 49
Constant (calibrated) Speed
TIMED
sets a mode where the time between each point in a route is passed at a fixed time, a value
set in the variable SEGTIME for example
500 SEGTIME ! sets the time from one line to the next in a route to 500 mSecs.
You can also change it in SETTINGS.
To have a constant linear speed simply make a straight line route as above so the distances
between points are the same. Then set a value in SEGTIME and enter
TIMED RUN

28.02.2015

RoboForth Tutorial page 50
Overview of encoder system, hardware/software.

As the robot moves its motion is tracked by incremental optical encoders. The encoder
counts are multiplied by constants, a different constant for each encoder. When you type
WHERE you see 3 lines. The top line is the motor count. The second line is the counts
received back from the encoders and the bottom line is where the encoders think the robot
ought to be by multiplying the encoder counts by the constants. On an R17 the encoders are
very close to the motors and should match the motor counts within 1 or 2. On an R12 the
encoders are down the gear trains and there will be much larger differences between the top
and bottom lines.
If the difference between top and bottom exceeds a tolerance then the robot stops with the
error ENCODER-STEPPER MIS-MATCH, AXES followed by which axis or axes gave an
error. Type WHERE and you will see how much error there is.
Situations where you would see such an error include:
A collision.
Too much payload.
Too high a speed set.
Mechanical problem.
The primary function of the encoders is as watchdogs. However if an R17 robot stalls for a
benign reason (not a mechanical problem) then you can read back from the encoders and
continue. The command for that is
ENCASSUME
This is not recommended because there is always some difference of opinion between the
motors and encoders so ENCASSUME might introduce an error. Generally the motors will
always be right and the encoders track with some error. This error is much larger with an
R12. So if you use ENCASSUME you will see the error at the next CALIBRATE.

==advanced==

A flag byte EFP shows which encoders are fitted (Encoder Fitted Pattern)
EFP ? 31 OK
Means the robot has encoders fitted to axes 1,2,3,4,5 (1+2+4+8+16)

You can disable all the encoders with ENCOFF and re-enable with
ENCON

You can functionally check the encoders: first DE-ENERGIZE the robot then enter ENCTEST
then move the robot by hand. Press escape to exit ENCTEST.

If a single encoder fails it is possible to continue using the robot by disabling that encoder, for
example if waist encoder has failed then the EFP you want is 2+4+8+16 = 30 or if the
shoulder encoder failes you want 1+4+8+16 = 29.
So you can enter
29 EFP !

28.02.2015

RoboForth Tutorial page 51
Lead-by-the-nose is a technique whereby you move the robot by hand and learn its position.
First create a route to take the values. De-energize the robot with
DE-ENERGIZE. Then move the robot by hand and when you are in a desired position type
ENCLEARN
OR – use the teach pad. When you are in a desired position press the tick key.
However this method is not recommended for two reasons – one is that the encoders are not
accurate enough and the second reason is that it is very difficult to position the robot by hand
with any accuracy. Using the teach pad in the normal way is much better and in JOG mode
you can move at 0.1mm increments.

Vectored execution

Earlier an explanation of the CFA was given. An example was given:
FIND HI EXECUTE
Finds the CFA of HI and executes that, i.e. exactly the same as just typing HI
But you could also create a variable, say HIVEC
VARIABLE HIVEC
FIND HI HIVEC !
Then later use
HIVEC @ EXECUTE to execute HI
One example of how this us useful is the FN key on the teach pad. If you do
FIND HI FN !
Then when you use the teach pad pressing the FN key executes HI
(or any other definition you wish to make the FN key execute).
You can also re-program errors, for example normally pressing the stop button just stops the
robot with error 3. But you may need a more complex action to take place. Simply define that
action as a word and put the CFA of the word in STOPVEC. For example:
: STOP-ACTION
CR .” Stop button has been pressed”
CR .” Press space bar to abort or any other key to continue”
KEY ASPACE = IF
 STOPABORT
THEN
;
You can then write
FIND STOP-ACTION STOPVEC !
Or in more simply
SET STOPVEC STOP-ACTION
You can put this line in your initialization. A typical initialization would look like this:
: INITIALIZE
START
CALIBRATE
SET STOPVEC STOP-ACTION
;
Other vectors you can change are:
ENCVEC – for alternative action in case of an encoder error,
DSPVEC – for action to take place during RUN
INTVEC – for action to take place if there is an interrupt.

28.02.2015

RoboForth Tutorial page 52
Input-output

All inputs and outputs are arranged as 8-bit ports. The standard ports are PA PB and PC and
the expansion ports are QA QB QC, RA RB RC etc.

PA is an output port, PB is an input port and PC is 4 bits in and 4 bits out.
Outputs
To send a value out of port PA
(value) PA out.
To manipulate an individual bit you can use
PA n ON and PA n OFF where n is a bit number from 0 to 7, for example
PA 0 ON will turn on the gripper. PA 0 OFF will turn it off.
Thinking Forth-wise and modular suppose you have a pump controlled by port PA bit 5, you
could define
: PUMP PA 5 ;
Thereafter you can use
PUMP ON and PUMP OFF
Inputs
You can read the value from any port with IN e.g. PB IN – this leaves the value of that port on
the stack.
PB IN . 0 OK
You can test an individual bit with
PB 5 BIT?
This will leave a true if the input is high and false i.e. zero if the input is low. A true is ANY
non-zero value. So for a high input on bit 5:
PB 5 BIT? . 32 OK
You can hold up a program for an input to change state with WAIT
PB 5 1 WAIT
waits for bit 5 of port PB to change to a 1.
WAIT has a stop button check in it so if the input is faulty you can still get control by pressing
the stop button.
Analog
When fitted there are 4 input channels to the ADC 0-3 and 2 DAC output channels A and B.
To read an input
0 ADC reads channel 0 and leaves the value on the stack.
0 DACA sends 0 volts out of DAC channel A
Second serial port
The second serial port is invoked with IOFLAG C1SET and switched back with IOFLAG
C0SET. With the IOFLAG set to 1 all control is transferred to the second port so any
command you wish to type you need to type it into the second serial port. Therefore it is
sensible to define words that use the second port to start with IOFLAG C1SET and end with
IOFLAG C0SET, thus returning control to port 0 after use.
See the controller manual for more details including setting Baud rate and changing port 0
Baud rate.

28.02.2015

RoboForth Tutorial page 53
Control words –2

The BEGIN – UNTIL loop is used to create a repeating loop. It repeats
UNTIL a condition is met. This could be an input or the escape key etc.
A RoboForth word ?TERMINAL leaves a true if the escape key is
pressed.
: TEST
BEGIN
 TELL SHOULDER 1000 MOVE
 0 MOVETO
?TERMINAL UNTIL
;
TEST will continually rock the shoulder back and forth 1000 steps until you press escape.
The robot will not stop immediately, only after the 0 MOVETO command when the escape
key is then checked.

You might want such a loop to end dependent on an input, say PB 7 changing from low to
high:
: TEST
BEGIN
 TELL SHOULDER 1000 MOVE
 0 MOVETO
PB 7 BIT? UNTIL
;

Example of a word that performs two actions depending on the value of an input (say PB 6)
: TEST
BEGIN begin a loop
 TELL SHOULDER select shoulder
 PB 6 BIT? IF is PB 6 high?
 1000 MOVE move 1000 steps
 ELSE else it is not high
 2000 MOVE so move 2000 steps instead
 THEN end of IF-THEN loop
 0 MOVETO finally go back to zero
?TERMINAL UNTIL repeat from BEGIN unless the escape key was pressed.
;
If PB 6 is high the shoulder moves 1000 steps and if it is low it moves 2000 steps.

For WHILE and REPEAT see the controller manual.

28.02.2015

RoboForth Tutorial page 54
Counting loops are achieved with DO… LOOP.
: TEST2
TELL SHOULDER select shoulder
10 0 DO do it 10 times
 1000 MOVE
 0 MOVETO
LOOP
;
This will cycle the shoulder 1000 steps 10 times.
Note that the upper limit of the loop – 10 – is never reached. The loop runs from 0 to 9 i.e. 10
times and exits when the index reaches 10.
I -- this is the actual value of the index of the loop which increments each time round.
: TEST3
TELL SHOULDER select shoulder
10 0 DO do it 10 times
 I . print the index
LOOP
;
This is the same but prints the values of the index each time around
TEST3 0 1 2 3 4 5 6 7 8 9 OK
If you want to count from 1 to 10 then it’s
: TEST4
TELL SHOULDER select shoulder
11 1 DO do it 10 times
 I . print the index
LOOP
;
You can leave a loop early using LEAVE e.g.
: TEST5
TELL SHOULDER select shoulder
11 1 DO do it 10 times
 I . print the index
 1000 MOVE move the selected joint 1000
 0 MOVETO move back to zero
 PB 5 BIT? IF LEAVE THEN if PB 5 goes high end the loop early
LOOP do it again or leave if PB 5 was high.
;
This will cycle the shoulder 10 times but if you put the input PB 5 high before reaching 10
then the robot will finish its current cycle and stop.
For loops that increment more than 1 or negative see the controller manual.
Note: the indents above are just for readability (called white space).

28.02.2015

RoboForth Tutorial page 55
Outer Interpreter

When you are typing commands into the controller from the communications window your
commands are being collected and handled by the outer interpreter which itself is a word.
The word is OUTER. It is possible to invoke this word again in a program so you can
effectively get more commands in the middle of another command in progress.
Example:
: TEST6
TELL SHOULDER select shoulder
11 1 DO do it 10 times
 I . print the index
 1000 MOVE move the selected joint 1000
 0 MOVETO move back to zero
 KEY ASPACE = IF OUTER THEN if you press space run the outer interpreter
LOOP and again
;
What TEST6 does is to cycle the shoulder 10 times. If at any time you press the space bar
the program will enter the outer interpreter just after the shoulder moves to zero. It will say
OK just like it did the first time, but it is actually in the middle of TEST6 as the counts will
show. Type EXIT to continue with TEST6

You can also get the stop button to invoke OUTER – see earlier section on vectored
execution. Just enter
SET STOPVEC OUTER
Usefulness – when the stop button is pressed the system invokes OUTER. This gives you
the opportunity to investigate why someone pressed the stop button and if you type EXIT the
robot will continue.

 Warning: the robot may not be able to continue from exactly the position it reached. If
a route is being run in continuous path then the system skips the rest of that route and
continues from there. This is because a route in continuous path is treated as a single move.

28.02.2015

RoboForth Tutorial page 56
Interrupts

Interrupts work like vectored execution. When an interrupt occurs, if enabled then the word
whose CFA is in INTVEC is executed.
Proceed as follows:
1. Define the word you want executed on the interrupt. Suppose the word is MEASURE. Test
it before use.
2. Define a new word that has just MEASURE but ends in RETURN (return from interrupt)
e.g.
: RMEASURE
MEASURE
RETURN
;
You can not test RMEASURE in the communications window. It is only suitable for use with
interrupts. That is why you need two definitions, one to test and one to use.
3. Put the CFA in INTVEC:
SET INTVEC RMEASURE

Timer interrupt
Set the interval of interrupts e.g. for an interrupt every 100 mS use
100 INT-TIME !
Start the timer with
START-TIMER
and stop it with
STOP-TIMER

Example to beep the terminal every 500 mSecs even though something else is already
running. First define RBEEP which is the same as BEEP but ends in RETURN.
: RBEEP
BEEP
RETURN
;
: TEST7
SET INTVEC RBEEP set RBEEP as the word that executes when there is an interrupt.
500 INT-TIME ! set the time to 500 mSecs
START-TIMER start the timer
BEGIN start a loop
 TELL SHOULDER 1000 MOVE move the shoulder back and forth
 0 MOVETO
?TERMINAL UNTIL until the escape key is pressed.
STOP-TIMER then stop the timer.
;
The shoulder will rock back and forth until you press escape. While it moves every ½ second
the terminal will beep. Press escape to stop the motion and the interrupts.
Event interrupt
For an interrupt from an input a link must be put on the I/O card. See controller manual for
details.

28.02.2015

RoboForth Tutorial page 57
HELP! An error message!

While getting started

>START NOT DEFINED! ABORTED
Your keyswitch is in cold start position. If you already have a project in the controller simply
turn the key to warm start and press reset. If you have not yet started programming then
enter ROBOFORTH then turn the key to warm start. After you have programmed something
enter USAVE to save your program to controller flash memory.
If your keyswitch is not in the cold start position then your program may be corrupted. In that
case switch it to the cold start position, press reset then enter ROBOFORTH and turn back to
warm start.

On loading a project or reloading the ed2 text using the green down-arrow:

>| >>>>>>>XXXX NOT DEFINED! ABORTED
and a dialog box that says >expected with an OK button.
(where XXXX is just an example)
Click the OK box and you see
>IOFLAG C0SET
>

This is because a word you have used in your text file was not defined already. Perhaps it is
mis-spelled. Try to find the word in your text file and correct it.

If the word that is undefined is a word after a colon, for example
NEWPART UNDEFINED! ABORT
then the most likely reason is a missing semi-colon from your previous definition. The system
is still in compile mode when it got to your new word. For example:
: SETUP
words
words
missing semi-colon
: NEWPART
etc

>| >>>>>>>> ABORTED
>
but no reason given. also a dialog box that says >expected with an OK button.
The most probable reason is a stack underflow resulting from an improper use of loop words,
or a missing loop word, for example UNTIL with no BEGIN.
You can see better where the error occurs like this: go to settings, configuration and un-
check hide mode. Now load the file again. If the error comes right after a word like UNTIL or
LOOP or THEN then that is the reason – missing BEGIN or missing DO or missing IF.

28.02.2015

RoboForth Tutorial page 58
While using the robot

Using RUN or any word that contains RUN you get
ILLEGAL! ABORTED
or
STACK UNDERFLOW! ABORTED
You must select a route first. Either type its name now or make sure the name of the route is
in your code.

Too tight line x ABORTED

See the RoboForth manual, section 7.2.6. If two lines are right close to each other in
coordinate values the DSP can not change the direction in the time allowed at the SPEED
and ACCEL values given. Simply reduce SPEED or increase ACCEL and try again. There is
a word ADJUST which reduces speed automatically to a value that works.

If you have a SPEED value embedded in the route as a function then ADJUST will not work.
It will hang and you need to press escape to get out. Your only recourse is to edit the speed
values in the route or increase the value of ACCEL.

Another recourse is to list the route and see if two lines are very close to each other in values
and maybe edit those two positions further apart.

You might possibly by mistake have two lines next to each other one being a duplicate of the
other. This can never work. Delete one of them.

STOP BUTTON PRESSED but it wasn’t. Check the jack in the rear of the controller.

ENCODER-STEPPER MISMATCH AXES n n n

Where n n n is a list of the axes which failed.
If all the axes have failed then maybe you didn’t type START at the beginning, or the sensor
cable is not properly plugged into the robot.

One or more axes could be a result of running too fast – reduce the value of SPEED and
ACCEL. If you lose track of what SPEED or ACCEL you have then try NORMAL or start
afresh with START CALIBRATE
Or it could be the tolerances are too tight – type WHERE and compare the top and bottom
lines. The top line is the target position and the bottom line is where the encoders think the
robot is. If there is a difference of 5 or more for an R17 or more than 50 for an R12 it could be
all you need is to increase the tolerances. See Help Sheet 12.

28.02.2015

RoboForth Tutorial page 59
Double defined words.
Example: ALIGN is a word in Roboforth that aligns the gripper with the XY axes (see above).
If you create a place called ALIGN then the original definition wll not longer be availabe.
Every time you enter ALIGN the robot will go to the place with that name and not do the
intended ALIGN. So you should avoid defining new words or places or routes with the same
names as RoboForth words. And you should also avoid defining new words with the same
names as you have already created, for example a definition called TEST and a place called
TEST also.
To check if you have done this go to the RobWin project drop-down and click validate.

Run file too short message from RobWin when loading a project. This means the project is
corrupted but it may be possible to recover the project from the controller. See
instructions on Help Sheet 12.

28.02.2015

	Introduction
	Launch RobWin
	Basic technology
	How stepping motors work, stepping motor counts, micro-stepping.
	Getting Started
	Command Line
	Words and definitions
	Arguments
	Integers
	FORTH words you need to know
	Control words -1
	RobWin
	Initialization and calibration commands:
	Moving the robot using TELL with relative and absolute commands
	Operating the gripper
	Electric Gripper
	Moving the robot using the teach box.
	Changing speed and acceleration.
	Calibration -2
	Introduction to Cartesian mode.
	Points
	ALIGN mode
	Using the teach pad in Cartesian mode
	Using the Nexus teach pad
	Walk-through of ALIGN mode.
	Tool transformations
	Walk-through using TOOL-LENGTH
	Learning positions
	Start a project
	Programming using PLACE names.
	Objects - 1
	Timers
	Creation and downloading of text file for pick-and-place routine. (.ED2 file)
	Programming using named lists called ROUTEs.
	Cartesian routes
	Continuous Path
	Structure of data in RoboForth
	START-HERE and END-THERE
	Rows and matrices
	Walk-through to create a 2-D matrix
	Creating a pile or stack.
	Creating a straight line
	Constant (calibrated) Speed
	Overview of encoder system, hardware/software.
	Vectored execution
	Input-output
	Control words –2
	Outer Interpreter
	Interrupts
	HELP! An error message!

